
Eur. Phys. J. C (2020) 80:230
https://doi.org/10.1140/epjc/s10052-020-7786-0

Special Article - New Tools and Techniques

HPGe detector field calculation methods demonstrated
with an educational program, GeFiCa

Jianchen Li, Jing Liua , Kyler Kooi

Department of Physics, University of South Dakota, 414 East Clark Street, Vermillion, SD 57069, USA

Received: 10 January 2020 / Accepted: 26 February 2020
© The Author(s) 2020

Abstract A review of tools and methods to calculate elec-
trostatic potentials and fields inside high-purity germanium
detectors in various configurations is given. The methods are
illustrated concretely with a new educational program named
GeFiCa - Germanium detector Field Calculator. Demon-
strated in GeFiCa are generic numerical calculations based
on the successive over-relaxation method as well as analytic
ones whenever simplification is possible due to highly sym-
metric detector geometries. GeFiCa is written in C++ and
provided as an extension to the CERN ROOT libraries widely
used in the particle physics community. Calculation codes for
individual detectors, provided as ROOT macros and python
scripts, are distributed along with the GeFiCa core library,
serving as both examples showing the usage of GeFiCa and
starting points for customized calculations. They can be run
without compilation in a ROOT interactive session or directly
from a Linux shell. The numerical results are saved in a
ROOT tree, making full use of the I/O optimization and plot-
ting functionalities in ROOT. The speed and precision of the
calculation are comparable to other commonly used pack-
ages, which qualifies GeFiCa as a scientific research tool.
However, the main focus of GeFiCa is to clearly explain and
demonstrate the analytic and numeric methods to solve Pois-
son’s equation, practical coding considerations and visual-
ization methods, with intensive documentation and example
macros. It serves as a one-stop resource for people who want
to understand the operating mechanism of such a package
under the hood.

1 Introduction

The calculation of electrostatic potentials and fields in a high-
purity germanium (HPGe) detector is the initial step in a full
pulse-shape simulation [1–5] process. It is also used to guide
the design of novel detector geometries to avoid unreason-

a e-mail: Jing.Liu@usd.edu (corresponding author)

ably high depletion voltages or hidden undepleted regions,
which may occur when the size of a detector is enlarged [6].
The design of read-out electronics can benefit from it as well
since the capacitance of a detector, a determination factor
of the electronics noise, can be calculated from the energy
stored in the electric field in the detector. It is widely used
in HPGe detector based neutrinoless double beta (0νββ)
decay experiments, such as GERDA [7] and MJD [8], dark
matter experiments, such as CoGeNT [9], Texono [10] and
CDEX [11], and gamma-ray tracking detectors to study struc-
tures of atomic nuclei, such as AGATA [12] and GRETA [13],
etc.

A complete list is impossible, but commonly used field
calculation packages include fieldgen (an essential part of
siggen [1,14]) used in GRETINA [15] (an early phase of
GRETA) and MJD, ADL [2] and SIMION [2–4,16] used
in AGATA and GERDA, Maxwell [17] used in most exper-
iments, MaGe [18] used in GERDA and MJD, and FEn-
iCS [19], a popular open-source computing platform for solv-
ing partial differential equations. A new package calledSolid-
StateDetectors.jl [20], SSD in short hereafter, is under rapid
development at the Max-Planck-Institut für Physik for LEG-
END [21], a new 0νββ experiment as a combined effort of
GERDA and MJD.

SIMION is a commercial software package primarily used
to simulate the transportation of charged particles in static
or low-frequency RF fields. According to its documenta-
tion [16], it uses the finite-element method to calculate 2D
and 3D fields with up to almost 20 billion grid points, given
enough RAM. Its power in static field calculation is overkill
for common HPGe detector configurations while lacking
some important features that are required for HPGe detec-
tor applications, such as the calculation of depletion volt-
age, region and detector capacitance, etc. This is understand-
able given that the main application of SIMION is not HPGe
detector field calculation.

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-020-7786-0&domain=pdf
http://orcid.org/0000-0003-1869-2407
mailto:Jing.Liu@usd.edu

 230 Page 2 of 25 Eur. Phys. J. C (2020) 80:230

ADL stands for AGATA Detector Library [2]. It is used
by the AGATA collaboration to simulate and analyze pulse
shapes of electronic signals from segmented HPGe detector
arrays in order to determine interaction positions of γ -rays
originated from the nuclear target under study. It can be used
to calculate electric fields in common detector configurations.
However, AGATA detectors take irregular shapes to be tightly
packaged together, their fields are calculated using SIMION.

ANSYS Maxwell [17] is a more popular electromagnetic
field simulation software compared to SIMION. It is for the
design and analysis of electric motors, actuators, sensors,
transformers and other electromagnetic and electromechani-
cal devices. It uses automatic adaptive meshing techniques to
achieve user-specified accuracy without detailed instruction
from a user. As its main application is not HPGe detector field
calculation, it has the same advantages and disadvantages as
SIMION, but is more expensive than SIMION.

A common pitfall of all general-purpose commercial soft-
ware is that one has to pay for extra features that are not
needed in the HPGe field calculation, while still missing out
some basic features that are needed.

FEniCS [19], on the other hand, is a free-to-use, open-
source program developed by a global community of scien-
tists and software developers, and is just as sophisticated as
SIMION and Maxwell. Using efficient finite-element codes,
its main purpose is to solve partial differential equations,
including Poisson’s equation, which is needed in HPGe field
calculations. As versatile as it is, FEniCS demands effort to
adapt it to a specific application, such as calculating fields
in HPGe detectors. From this point of view, FEniCS has the
same drawback as commercial packages, that is, it is overkill
for HPGe field calculation, but lacks basic features that are
specific for HPGe application. Nonetheless, there is ongo-
ing effort within the MJD collaboration to adapt it for HPGe
detectors.

On the contrary, MaGe [18] and siggen [1,14] are dedi-
cated software for HPGe signal formation simulation. They
are not as versatile and sophisticated as the previously men-
tioned packages, but are sufficient for the HPGe application.
Initially, MaGe was jointly developed by the Majorana [8]
and GERDA collaborations mainly as a GEANT4 [22–24]
based Monte Carlo simulation package. It was extended
later on to include a full pulse-shape simulation chain using
GEANT4 simulation results as input [5,25,26]. It can be
used for the simulation of both segmented [27] and point-
contact [28] detectors. The major drawback of MaGe is that
it is only available for the GERDA or Majorana collaborators.

Siggen [1,14] is mainly developed by David Radford for
MJD pulse-shape simulation. It is open-source and free to
use. A stand-alone portion of siggen, called fieldgen, is ded-
icated to the calculation of fields and potentials of point-
contact detectors in two dimensional cylindrical coordinates.
It cannot be used for segmented detectors. The program is

written in c, but the configuration file is in plain ASCII with
straightforward syntax for a user to easily specify detailed
dimensions of a detector, such as the size of small elec-
tronic contact, or the width of a groove to reduce surface
leakage current. Fieldgen can also be used to calculate the
capacitance of a detector, the full depletion voltage, and the
depletion region in case that a detector is not fully depleted.
Those functions are not available in the packages mentioned
previously. Fieldgen utilizes the successive over-relaxation
method (SOR) to first calculate the potential in a coarse grid
with a typical distance of 1 mm between two grid points. The
result of this coarse calculation is then used as the input of
a more precise calculation in a finer grid with a typical dis-
tance of 0.1 mm between two grid points. Using this simple
approach in place of automatic adaptive meshing techniques
used in some of the other packages makes fieldgen both fast
and accurate enough for its dedicated application.

SSD [20] is mainly developed by the GeDet group at the
Max-Planck-Institut für Physik for LEGEND [21]. It is capa-
ble of not only the calculation of electric fields but also the
simulation of electronic signals. In its field calculation part,
it contains functions to deal with common detector config-
urations, such as point-contact and segmented ones. It fea-
tures adaptive grid sizes, which improves both the calculation
speed and accuracy. It is written in Julia [29], a relatively new,
high-level, general-purpose programming language designed
to address the needs of high-performance numerical analysis.
It is possible to enable multi-threading in SSD, which takes
the full advantage of modern computer hardware. Compared
to MaGe and fieldgen, SSD has an attractive feature to cal-
culate the field outside of a detector taking into account the
influence of the detector holding structure nearby.

Overall, fieldgen seems to be the maturest at this moment
for users interested in HPGe field calculation as long as their
detector geometry is similar to that of point-contact ones.1

However, the lack of detailed documentation makes it hard
for a developer to modify the code of fieldgen for other
geometries or to add new features.

This is one of the reasons why many research groups write
their own code for HPGe detector field calculation instead of
using the mentioned major players. An obvious advantage
of home brewed code is that it is well understood and easy
to tune if needed. The second advantage is that writing their
own code instead of using existing ones deepens the under-
standing of junior researchers on HPGe detector working
principles and numerical calculation techniques. Drawbacks
of this approach include the limited functionality, the lack of
verification and the waste of time in reinventing the wheel.

1 It is not as limiting as it sounds, because the bore hole of a common
coaxial detector can be regarded as a very large point-contact, and a
planar detector can be regarded as having a large flat point-contact. The
main limitation is on segmented or stripped contacts.

123

Eur. Phys. J. C (2020) 80:230 Page 3 of 25 230

GeFiCa is aimed at clear explanation and demonstration
of the analytic and numeric methods to solve Poisson’s equa-
tion, practical coding considerations and visualization meth-
ods. It does so by providing intensive documentation and
example macros, and serves as a one-stop resource for peo-
ple who want to understand the operating mechanism of such
a package under the hood. None of the tools mentioned above
fits all applications. Home brewed codes built on top of some
existing tools may be the best choice for education and spe-
cific applications, as long as the drawbacks mentioned previ-
ously can be effectively overcome through the demonstration
provided in GeFiCa.

2 Space charges

HPGe crystals come in two types. As shown in Fig. 1, if the
trace impurity atoms in a crystal provide free-moving elec-
trons (phosphorus, for example), the crystal is of n-type, and
if the atoms provide free-moving holes (boron, for example),
the crystal is of p-type. In both literature and popular science
articles, these free-moving charge carriers are often preceded
with adjectives like “extra” or “excess”, which may lead to a
false impression that an n-type crystal has “extra” electrons
donated by donor impurity atoms and is hence negatively
charged, or that a p-type crystal has “extra” holes (vacancies
in covalent bonds) due to acceptor impurity atoms and is pos-
itively charged. These free-moving charges can be regarded
as “extra” since they are not used in forming covalent bonds
between atoms, which is the fundamental reason why they
are free. But they are not “extra” charges that break the bal-
ance of the numbers of protons and electrons in a crystal.
Actually, no matter which type it is, a crystal is electrically
neutral as a whole because the number of protons are the same
as the number of electrons in both impurity and Ge atoms.

Fig. 1 Conceptual sketch of covalent bonds between Ge and impurity
atoms (P and B, as examples)

As trivial as it sounds, this fact is worthy of emphasizing,
especially for one to understand the sign of space charges to
be mentioned in the following paragraph.

When the bias voltage applied to a crystal is high enough,
all free-moving charge carriers can be swept out of the bulk
of the crystal. The crystal is said to be depleted of free charge
carriers. In an n-type crystal, it is the free-moving electrons
that are swept out. Consequently, the trace impurity atoms are
positively ionized. Since the ions are fixed in their locations
in the crystal, they cannot be swept out by the external elec-
tric field, and are hence called “space charges”. In a p-type
crystal, however, the space charges are negative, since it is
the free-moving holes that are swept out. It is quite counter
intuitive for one to realize the fact that a depleted n-type
crystal is actually positively charged and a p-type negatively
charged. Space charges create an electric field in addition to
the one that is created by the bias voltage. The total electric
field inside a depleted crystal is the sum of these two.

The space charge density distribution, normally denoted
as ρ, can be quite complicated due to the nature of HPGe
single crystal growth process [30,31]. It is normally char-
acterized in the following way. First, a few wafers are cut
from various axial positions in a HPGe single-crystal boule
pulled using the Czochralski method, typically, one from the
shoulder and one from the tail of the boule. Second, small
samples are cut from individual wafers along their radius.
Net impurity concentrations of these samples, NA − ND , are
then measured using Hall-effect, where NA is the acceptor
concentration, ND donor concentration. Since there is a rela-
tionship between ρ and NA−ND as explained in the previous
paragraph:

ρ = −(NA − ND)e, (1)

where e = 1.6 × 10−19 C is the elementary charge, both the
vertical (axial) and radial distributions of ρ can be investi-
gated this way (Fig. 2).

Fig. 2 A HPGe single-crystal boule pulled using the Czochralski
method, and a HPGe wafer cut from the boule for impurity measure-
ments

123

 230 Page 4 of 25 Eur. Phys. J. C (2020) 80:230

Fig. 3 A typical vertical net impurity concentration profile of a HPGe
single-crystal boule, taken from [30]

A typical vertical net impurity concentration profile of a
HPGe single-crystal boule is shown in Fig. 3 taken from [30]
with a vertical double-dotted dashed line added to clearly
indicate the p-type and n-type regions. The dashed line indi-
cates the contribution from a typical p-type impurity ele-
ment, Al. The dotted dashed curve indicates the contribution
from another typical p-type impurity element, B. The dotted
curve shows the contribution from a typical n-type impurity
element, P. The solid curve broken around 80% of the boule
is the overall net impurity concentration. The crystal is of
p-type from 0 to 80% of its length, and changes to n-type
after that. The curve is approximately flat from 20 to 40%,
which is a typical portion of the boule to be harvested for
detector fabrication.

A typical radial net impurity concentration profile of a
HPGe single crystal is shown in Fig. 4 taken from [31]. It is
basically flat from 0 to a certain radius, but increases dramat-
ically close to the skin of the crystal. Sometimes, a crystal
may even change its type from its center to its outer radius,
as mentioned in [30]. The skin of a boule may be removed
so that the central part used for detector fabrication has a
relatively constant impurity distribution.

Given those experimental evidences, the space charge den-
sity in general has to be expressed as a function of location,
i.e., ρ(x), where x is a vector indicating the location of inter-
est. Since the measurement of impurity is destructive for the
raw material, the real impurity distribution in a crystal used
for detector fabrication is usually unknown. Normally, only
the average impurities close to the top and bottom of the cut
portion of the crystal are known. The impurity distribution in
between is regarded as a constant or approximated by a first-
order polynomial determined by the average top and bottom
impurities. If the right portion of a crystal (20–40% of the
black line in Fig. 3, for example) is harvested for detector
fabrication, this is normally an acceptable approximation.

Fig. 4 A typical radial net impurity concentration profile of a HPGe
single-crystal boule, taken from [31]

However, one has to keep in mind that our knowledge of the
real impurity distribution is incomplete, and our approxima-
tion may have sizable uncertainties.

3 Poisson’s equation

The existence of space charges complicates the calculation of
the electrostatic potential in a HPGe detector. Without space
charges, the potential can be calculated by solving Laplace’s
equation,

∇2V (x) = 0, (2)

where V (x) is the potential to be determined. With space
charges, however, the potential must be calculated by solving
Poisson’s equation, which takes into account the space charge
distribution in the bulk of a detector:

∇2V (x) = −ρ(x)
ε

, (3)

where ε = ε0εr with ε0 ≈ 8.854 × 10−12 F/m being the
permittivity in vacuum, and εr ≈ 16.0 being the relative
permittivity (or dielectric constant) of Ge.

Both differential equations have an infinite amount of
solutions characterized by a few undetermined constants.
These constants can be fixed by boundary conditions, which
refers to the voltage values on detector electrodes. The rela-
tionship between these two equations can be understood
better when we consider two different boundary condition
setups: first, potentials of electrodes of a detector are set based
on the bias voltage applied to the detector, second, they are
all set to zero. If Laplace’s equation is solved with the first
setup, its solution is a potential field caused by the bias only.
If Poisson’s equation is solved with the second setup, its solu-
tion is simply the potential caused by the space charges only.
The potential in a detector is a linear combination of these
two solutions. We can also solve Poisson’s equation with the

123

Eur. Phys. J. C (2020) 80:230 Page 5 of 25 230

Fig. 5 3D model of a planar detector with electrodes indicated with
blue

first set of boundary conditions, which directly results in the
combined potential

In addition to the potential, we are also interested in the
electric field distribution in a detector. The electric field vec-
tor E can be then determined with the equation

E = −∇V . (4)

These equations are rather abstract. A concrete expression
can be obtained in a specific coordinate system. For example,
in Cartesian coordinates, Poisson’s equation reads,

∂2V

∂x2 + ∂2V

∂y2 + ∂2V

∂z2 = −ρ(x, y, z)

ε
, (5)

where, x, y, z are the three Cartesian coordinates. The
expression of Poisson’s equation in spherical and cylindri-
cal coordinates are listed in “Appendix A” (Fig. 5).

4 Analytic solutions

4.1 Planar detectors

As mentioned in Sect. 2, in general, the space charge den-
sity ρ is a function of x, and there is no analytic solution
for three dimensional Poisson’s equation with a complicated
ρ(x). However, in certain highly symmetric detector config-
urations, Poisson’s equation can be significantly simplified
and its analytic solution can be obtained. For example, at the
center of a large but thin planar HPGe detector, the electric
potential can be regarded as only varying along the thickness
of the detector, x , and ρ can be regarded as a constant. Eq. (5)
can then be simplified to

d2V

dx2 = −ρ

ε
. (6)

Its analytic solution reads,

V = − ρ

2ε
x2 + C2x + C1, (7)

where C1 and C2 are constants which can be determined
using two boundary conditions, i.e., the voltages of two pla-
nar detector electrodes. The electric field reads,

E = −dV

dx
= ρ

ε
x − C2, (8)

Fig. 6 Voltage distributions in an ideal planar detector

Figure 6 shows the voltage as a function of the vertical
position in an ideal planar detector, assuming a thickness of
1 cm and a voltage of 2000 V applied to its top electrode.
The net impurity concentration corresponding to each curve
in the figure is listed in the legend. When ρ = 0, Eq. (7)
becomes V = C2x + C1, which is simply a straight line
between [0, 0] and [1 cm, 2000 V]. The higher an impurity
concentration, the more a curve is bent up or down depend-
ing on the type of the impurity. Since the slope of curves in
Fig. 6 is proportional to the magnitude of the electric field, as
shown in Eq. (8), the bending of the curves shows how space
charges modify the overall electric field in a detector. This is
demonstrated explicitly in Fig. 7, where the y-axis changes
to electrical field in the unit of V/cm. A small change of the
impurity concentration may result in large deviation of the
overall field from the constant external field. When the impu-
rity concentration is high enough, the electric field close to
the electrodes of the detector can be as low as zero. Such
low field regions are where severe charge trapping may hap-
pen, which deteriorates the energy resolution of the detector,
hence are not desirable. Obvious solutions of such a prob-
lem include applying a voltage significantly higher than the
depletion voltage, reducing the thickness of the detector, or
growing purer crystals. The first solution is dangerous, the
second is undesirable and the last is difficult. A less obvious
alternative is to switch to a different geometric configuration
of the detector.

4.2 Coaxial detectors

How the geometry of a detector can help solve this problem
can be clearly demonstrated using the analytic solution of
Poisson’s equation in cylindrical coordinates (Fig. 8). The
electric potential far away from its two end surfaces of a
true-coaxial HPGe detector can be regarded as varying only
with r . If one further assumes that the space charge density

123

 230 Page 6 of 25 Eur. Phys. J. C (2020) 80:230

Fig. 7 Electric field distributions in an ideal planar detector

Fig. 8 3D model of true coaxial detector with electrodes indicated with
blue

ρ is a constant, Poisson’s equation in cylindrical coordinates
can be simplified to

1

r

d

dr

(
r

dV

dr

)
= −ρ

ε
. (9)

Its analytic solution reads,

V = −ρr2

4ε
+ C1log(r) + C2, (10)

where C1 and C2 are constants, which can be determined
using boundary conditions, that is, the locations and voltages
of the two electrodes of a detector. The electric field is then

E = −∇V = ρr

2ε
− C1

r
. (11)

Figure 9 shows the voltage as a function of the radial
position in a true-coaxial detector with an inner radius of
0.25 cm, an outer radius of 1 cm and a voltage of 2000 V
applied to its inner electrode. The net impurity concentra-
tion corresponding to each curve in the figure is listed in the
legend. Compared to Fig. 6 for a planar detector, the curve

Fig. 9 Voltage distributions in a true coaxial detector

Fig. 10 Electric field distributions in a true coaxial detector

corresponding to the zero impurity is not a straight line any-
more. Instead, it bends downward, reflecting the fact that the
electrical field close to the inner radius is stronger, which
can be seen in Fig. 10 as well. Now, p-type impurities bend
the curves further down, while n-type impurities bend them
upwards, effectively flatten the electrical field distributions
along the radius, as shown explicitly in Fig. 10. Given the
right impurity concentration, the electrical field in a true-
coaxial detector can be optimized to avoid charge trapping.
To demonstrate this point more clearly, a curve correspond-
ing to a high impurity concentration of −6 × 1010/cm3 is
added to Figs. 9 and 10, which is not in Figs. 6 and 7. The
electric field distribution corresponding to this concentration
is in between ∼ 2000 V/cm and 4000 V/cm, well above zero
in the entire volume of the detector. One has to avoid falling
into a false impression that coaxial detectors prefer n-type
crystals to p-type ones. In reality, this preference can be eas-
ily flipped by flipping the bias polarity. It is better to say that
the type of the crystal prefers a certain bias polarity. As a
conclusion, coaxial detectors are much more tolerant of high
impurity concentrations than planar ones (Fig. 11).

123

Eur. Phys. J. C (2020) 80:230 Page 7 of 25 230

Fig. 11 3D model of a hemispherical detector with electrodes indi-
cated with blue

4.3 Hemispherical detectors

In spherical coordinates with polar and azimuthal symme-
tries, the θ and φ terms can be dropped and the Poisson’s
equation can be simplify to

1

r2

d

dr

(
r2 dV

dr

)
= −ρ

ε
. (12)

Assuming constant ρ, its analytic solution reads,

V = −ρr2

6ε
+ C1

1

r
+ C2, (13)

where C1 and C2 are constants that can be determined by
boundary conditions. The electrical field

E = −∇V = ρr

3ε
+ C1

1

r2 . (14)

A detector with such a configuration is more impurity tol-
erant than a coaxial one. However, it is not easy to bias the
inner radius of a full sphere. The electrical field of a hemi-
spherical detector can be approximated with the same solu-
tion, and it is possible to apply voltage to its inner radius.
However, it is a significant challenge to machine a cylindri-
cal single-crystal boule into such a shape. For this reason, no
hemispheric HPGe detectors have been made so far, and most
HPGe detectors take the cylindrical shape for convenience.

If the inner radius of an imaginary hemispheric detector
is small enough, say, about 1 mm, it can help illustrate some
important properties of a point-contact detector, which can
be imagined as a traditional coaxial detector with its cen-
tral contact shrunk to a point. For example, certain amount
of impurity is necessary to shape the electrical field in the
detector so that it is not too strong close to the point-contact

and not too weak far away from it. This is why the first point-
contact detector is called a “shaped-field” one [28].

4.4 Depletion voltage

Given fixed dimensions and impurity concentration of a crys-
tal, we’d like to find out the voltage at which the crystal can
be fully depleted, or the depletion voltage, Vd. The method
to solve this problem can be demonstrated using the analytic
solution, Eq. (7), of the one-dimensional Poisson’s equation
in Cartesian coordinates. The strategy can be applied to multi-
dimensional configurations with minor modifications.

To keep our discussion as concrete as possible, let us
assume an ideal planar detector with a thickness of d = 1 cm
and a homogeneous impurity concentration of 4 × 1010/cm3

(p-type) in its entire volume. Let’s further assume that its
bottom electrode is at x = 0 and grounded, i.e.

V (x = 0) = 0 (15)

Applying this boundary condition to Eq. (7), we haveC1 = 0.
If no bias is applied at the top electrode, that is, V (x =
d) = 0, we can further get C2 = ρd/(2ε), where ρ =
−4×1010/cm3e is the space charge density. Eq. (7) can then
be rearranged as,

V (x) = − ρ

2ε

(
x − d

2

)2

+ ρd2

8ε
, (16)

which is the green parabola shown in Fig. 12. However, this
is not physically correct, since the whole crystal should be at
V = 0 without any bias. The problem comes from our taken-
as-granted assumption that ρ = −4 × 1010/cm3e, which
is only true in depleted region. In undepleted region, there
should not be any space charge, that is, ρ = 0, which indeed
guarantees V (x) = 0 in Eq. (16).

Instead of regarding it as a mistake, there is a better way to
interpret Eq. (16), that is, it is the contribution to the voltage
from the “space charge alone”, when the detector is fully
depleted. Its value hence is not dependent on the bias voltage
after fully depletion. The overall voltage should be the sum
of this contribution and the voltage due to the external bias.

The external bias voltage distribution without any contri-
bution from space charges is simply V (x) = C2x (Eq. 7 with
ρ = 0,C1 = 0), that is, a straight line, as the one labelled
“bias alone” in Fig. 12.

At a bias voltage of −1000 V, the sum of “space charge
alone” and “bias alone” contributions gives the red curve in
Fig. 12 that is below the −1000 V line in a wide region. This
region can be regarded as a potential well where positive free
charge carriers are trapped. In another word, the −1000 V
bias is not enough to sweep all free charges out of the crystal.
The curve is hence labelled “undepleted”.

123

 230 Page 8 of 25 Eur. Phys. J. C (2020) 80:230

Fig. 12 Over depleted, just depleted, and undepleted voltage distribu-
tions in case of an ideal planar detector

What we are interested in here is to identify differences
between an undepleted case and a depleted one. In this con-
crete example, an “undepleted” curve has |V (x)| > |Vd| at
some x . If we change the crystal from p-type to n and keep
other configurations unchanged, the “space charge alone”
curve would bend downward. More general criteria hence
would be, an “undepleted” curve has V (x) out of the range
defined by boundary voltages, or dV/dx changing its sign,
at some x .

Assuming a certain bias voltage and a constant ρ over the
whole volume, if the final answer is “undepleted” according
to the criteria identified previously, we have to start over again
assuming a higher bias. Obviously, the detector will certainly
be depleted given an extremely high bias. However, in reality,
it is hard to deliver a very high voltage without micro (or even
major) discharges along the high voltage cable. Normally, the
operation voltage is ∼ 1000 V over the depletion voltage.

The difference between an over depleted curve and a just
depleted one, in this concrete example, is that

E(x = d) = −dV (x = d)/dx = 0 (17)

for the latter, but E(x = d) > 0 for the former case.
In general, we have to do a search in between 0 and a

large bias voltage for the “just depleted” case, where the
electric field E on one of the boundaries is exactly zero.
The calculation for this analytic example is very fast. Special
treatment has to be taken in multi-dimensional numerical
calculations to avoid expensive computations (see Sect. 5.3).

4.5 Impurity requirement

Given technical difficulties in delivering high voltages in a
cryogenic environment, a low depletion voltage is generally
preferred. It is a common practice to figure out the maximal
net impurity concentration a crystal with certain dimensions
must have to be depleted at or under a given voltage. In our

previous example, the depletion requirement is E(d) = 0,
which allows us to calculate C2:

E(x = d) = dV (d)

dx
= −ρ

ε
d + C2 = 0 ⇒ C2 = ρ

ε
d.

Insert the calculated C2 and C1 = 0 back to Eq. (7), we
get the maximal allowed space charge concentration ρ =
2V ε/d2, where V is the given voltage.

Analytic solutions are not available for more complicated
detector configurations. In that case, we need to make guesses
on the impurity concentration or even profile, search for cor-
responding depletion voltages based on the method described
in Sect. 5.3, and see if they go below the required voltage.

5 Numerical calculation

Even though many detector design concepts can be demon-
strated with analytic solutions of highly symmetric detec-
tor configurations, numerical calculations are necessary for
more advanced configurations that cannot be simplified to
lower dimensional problems.

The first step of numeric calculation is to establish a grid
within the detector volume, which consists of many tightly
spaced points, some right on boundaries, others inside. The
field values of a grid point can be determined by those of its
immediate neighboring points. Their relations are dictated
by Poisson’s Equation in its numeric forms. Starting with the
known values of the points on boundaries, the value of each
point can be uniquely determined.

Configuring a grid that ensures an efficient and accurate
calculation is an art by itself. For the sake of clarity in our
discussion without losing generality, let’s at first consider a
section of a one dimensional (1D) grid around a point at x ,
as shown in Fig. 13.

Numerically, the second order derivative on the left side
of Eq. (6) can be expressed as

d2V

dx2 = (Vi+1 − Vi)/dx+ − (Vi − Vi−1)/dx−
(dx+ + dx−)/2

, (18)

where dx± are the distances from the point at x to the previous
and the next points as shown in Fig. 13. It is possible to
involve more points in the calculation, such as the previous
previous or next next points, but the basic idea is the same.

There are different ways to rearrange Eq. (6) based on
Eq. (18), which lead to different methods to solve the prob-
lem. The two most common ones are the conjugate gradient
method and the successive over-relaxation method.

123

Eur. Phys. J. C (2020) 80:230 Page 9 of 25 230

Fig. 13 A section of a 1D grid around a point at x

5.1 Conjugate gradient method

The conjugate gradient method starts by moving all known
terms, such as the boundary voltages and terms containing
ρ(x), etc., to the right side of Eq. (6). Assuming n points in
our 1D grid shown in Fig. 13, and V (x) = Vi , ρ(x) = ρi are
the values at the ith point, Eq. (6) becomes,

0·V1+· · ·+Ci−1Vi−1+CiVi+Ci+1Vi+1+· · · 0·Vn−2 = Ki ,

where Ci is the coefficient of Vi , Ki is the known term that
contains ρi . We have such an equation for n − 2 points,
excluding the first and n − 1 one, since V0 = 0 and Vn−1 =
the bias voltage are known and have to be included in Ki ’s.
The n − 2 linear equations can be collectively written as

CV = K , (19)

where C is a n− 2 by n− 2 matrix, and V and K are vectors
with n − 2 elements. C is sparse, with at most 3 non-zero
elements in each row. It is also symmetric and positive def-
inite. A standard way to solve such a linear equation sys-
tem is the conjugate gradient algorithm [32], which boils
down to minimizing a quadratic function of V with the form
V TCV/2 − KT V . There is a ROOT [33] macro included in
GeFiCa to demonstrate the method. It works well when n is
below 100, but becomes painfully slow for a large n.

5.2 Successive over-relaxation method

Another way to rearrange Eq. (6) is

Vi =
ρ
2ε

+ (Vi+1/dx+ + Vi−1/dx−)/(dx+ + dx−)

(1/dx+ + 1/dx−)/(dx+ + dx−)
. (20)

If ρ = 0 and dx− = dx+, it can be simplified to

Vi = (Vi−1 + Vi+1)/2, (21)

where Vi is simply the average of its neighboring values. In
both equations, Vi is calculated given Vi−1 and Vi+1.

However, since Vi−1 and Vi+1 are also unknown (except
for V0 and Vn−1), we need to start the calculation with
some initial values. One choice would be V (0)

0 = V (0)
1 =

· · · V (0)
n−2 = 0, and V (0)

n−1 = the bias voltage, Vbias, where the
superscript (0) indicates that these are the initial values of
grid points.

Given these initial values, we can use Eq. (20) or (21)
to update Vi . Use Eq. (21) in our calculation hereafter to
simplify the demonstration, we have

V (j)
i = [V (j−1)

i−1 + V (j−1)
i+1]/2, (22)

where j indexes the steps of updating. Since V (j)
n−1 =

V (j−1)
n−1 = Vbias, it pulls the value of its neighbor Vn−2 up

a bit after each updating, and Vn−2 pulls up Vn−3, and so on
and so forth. After many iterations, Vi becomes very close
to its true value, the difference between the values of Vi in
current and previous iteration becomes very small. We can
use the following criterion to stop the iteration:

∣∣∣∣∣
∑
i

V (j)
i −

∑
i

V (j−1)
i

∣∣∣∣∣ < a small value, e.g.,10−8. (23)

This is the so-called successive relaxation (SR) method.
To speed up the relaxation process, we can manually

increase the difference of a value between two iterations by
introducing a constant, 1 < FR < 2, in the following way:

V (j)
i = V (j−1)

i + FR × (V (j−0.5)
i − V (j−1)

i), (24)

where, V (j−0.5)
i , is the value updated by the original relax-

ation method, FR is called the relaxation factor. This is
why the method is called successive over-relaxation (SOR)
method. The concept of SOR is depicted in Fig. 14, where the
first a few steps of updating are shown for the last a few grid
points in an ideal planar detector without any impurity. A
carefully chosen relaxation factor can reduce the total num-
ber of iteration significantly, which is discussed in detail in
Sect. 8.1.

To realize this idea in a program, one needs to create two
arrays, one to hold the old voltage value, V (j−1)

i , the other

to hold the updated voltage, V j
i , after the j th iteration. It

is possible to simplify the program a bit by using only one
array, which effectively changes Eq. (22) to

V (j)
i = [V (j)

i−1 + V (j−1)
i+1]/2, (25)

where the already updated value at i−1, V (j)
i−1 is used instead

of the old one, V (j−1)
i−1 , to update the value at i . This is called

forward substitution.

123

 230 Page 10 of 25 Eur. Phys. J. C (2020) 80:230

Fig. 14 Demonstration of how SOR increases the speed to approach
the true value of a potential at a grid point i from an initial guess V (0)

i

The same method can be applied to multiple dimensional
problems in various coordinate systems. The counterparts of
Eq. (20) in those systems are summarized in “Appendix B”.

5.3 Depletion voltage

The general method described in Sect. 4.4 applies to numeric
calculations as well. We need to search for a Vd that just
depletes the detector with the following procedure:

1. Pick up a Vmin, say zero, and a Vmax, say 106 V.
2. Assume a bias voltage, Vbias ∈ (Vmin, Vmax).
3. Run SOR until convergence.
4. Check if the detector is depleted. If not, replace Vmin with

Vbias; if yes, replace Vmax with Vbias.
5. Repeat from step 2 until Vmax − Vmin < 0.01 volt.

The depletion voltage Vd is then Vbias ≈ Vmax ≈ Vmin after
a successful search.

One feature of the undepleted curve in Fig. 12 distin-
guishes it from the depleted ones; that is, the maximum or
minimum of the potential is not on the boundaries of the
detector. Inspired by this, the criterion of depletion in step 4
for numerical calculations can then be set as none of the grid
points has a potential that is larger or smaller than the value
of any of its neighboring points.

A potential drawback of the described method is that it
may be time consuming if every new search needs to run an
SOR. Fortunately, there is a way to avoid that. As demon-
strated in Fig. 12, the total potential distribution, Vi , is a sum
of the distribution due to impurity alone, V ρ

i , and the one
due to bias alone, V b

i . Since V b
i = V u

i × Vbias, where V u
i

represents the potential distribution due to unit voltage, 1 V,
the total potential distribution can be calculated as

Fig. 15 Potential distribution of a planar detector with a |Vbias| < |Vd|
after some chosen numbers of SOR iterations. It shows the undepleted
region as well as the converging process of SOR

Vi = V u
i × Vbias + V ρ

i . (26)

If V u
i and V ρ

i are calculated using SOR before the described
iteration, step 3 can be replaced by Eq. (26) instead of another
SOR.

5.4 Undepleted region

When |Vbias| < |Vd|, some region of the detector is not
depleted. Numerically, the undepleted region can be found
by applying the following procedure to every grid point in
the SOR process:

1. Calculate the potential of a grid point Vi using potentials
of its immediate neighboring points.

2. Find the maximal and minimal potentials Vmax and Vmin

of the immediate neighboring points.
3. Compare Vi with Vmax and Vmin. If Vi < Vmin, it is set to

be the same as Vmin; if Vi > Vmax, it is set to be Vmax.

Figure 15 shows potential distributions of a planar detector
with a |Vbias| < |Vd| after some chosen numbers of SOR iter-
ations. One can see how the undepleted region grows larger
near one of the electrodes. Another interesting thing to notice
is that it does not take many iterations for the potential to
become very close to its final values. Most iterations after
that are used to improve the accuracy in a few percent level.

As shown in Fig. 15, the undepleted region in a planar
detector is adjacent to one of its electrodes. In the case of a
point-contact detector, the undepleted region can stand alone
somewhere in the center of the detector, away from any elec-
trode. This is the so-called pinch-off effect, since the depleted
region is “pinched off” from electrodes.

Since there is no electric field in the undepleted region to
separate and drift electrons and holes generated by radiation

123

Eur. Phys. J. C (2020) 80:230 Page 11 of 25 230

Fig. 16 The pinch-off effect demonstrated by the electric field as a
colored contour in logarithm scale in a point-contact detector

Fig. 17 Electric potential in the same detector as that in Fig. 16, shown
as a colored contour on top and a 3D mesh at the bottom

interactions, the region is insensitive to radiation. Even if a
pair of charge carriers are generated in the depleted region,
one of them may drift to the undepleted region along the
electric field and get stuck there instead of being collected
by an electrode. It is hence worthwhile to reveal the existence
of such an undepleted region through field calculation.

Figure 16 shows the electric field as a colored contour
in logarithmic scale in a point-contact detector. The point
contact is at the origin of the plot. The field value around the
center of the detector is very close to zero, so the logarithm
of them approaches negative infinity. They are color coded
as white, which nicely visualizes the undepleted region that
is pinched off from the point contact. Figure 17 shows the
corresponding potential distribution in both a colored contour
and a 3D mesh. Imagine the latter as a fancy water fountain.
Water streams out of its top edges flow into a little pond in the
middle of the fountain (the pinched-off undepleted region)
instead of the sink (point contact). Only streams that are very
close to the sink can flow directly into it instead of the pond.

Fig. 18 Electric field distribution in an ICPC

Fig. 19 Electric potential in the same ICPC as that in Fig. 18, shown
as a colored contour on top and a 3D mesh at the bottom

This phenomenon seriously limits the size of a point-
contact detector, since the electric field inside the detector
becomes weaker when the size of the crystal becomes larger
if the bias is not ramped up accordingly. To avoid this, one can
bore a central hole from the opposite side of the point-contact,
metallize its surface and keep it at the same bias as other
surfaces. Such a detector is called a inverted-coaxial point-
contact detector, or ICPC in short [34]. Figure 18 shows the
electric field distribution in an ICPC as a color coded contour
in logarithmic scale. Other configurations of this calculation
are kept the same as the ones used to generate Fig. 16, includ-
ing the crystal impurity level and the bias voltage. Figure 19
shows the corresponding potential distribution in both a col-
ored contour and a 3D mesh. Using again the water fountain
analogy to the 3D mesh, one can see clearly that the little
pond (undepleted region) is successfully eliminated by rais-
ing part of the bottom of the fountain.

123

 230 Page 12 of 25 Eur. Phys. J. C (2020) 80:230

5.5 Electric field lines

The thick gray lines in Figs. 16 and 18 are estimated charge
drift trajectories starting near the outer surface of the detec-
tors. The procedure of the estimation can be illustrated in two
dimensional Cartesian coordinates:

1. Linearly interpolate the electric field components Ex , Ey

at a random starting point (x, y) using values at its four
neighboring grid points.

2. Calculate the total electric field E =
√
E2
x + E2

y at the

same point.
3. Calculate the propagation of a positive unit charge along

x and y: dx = μExdt, dy = μEydt , where μ takes a
value of 40, 000 cm2/(volt·second), a number in between
typical electron and hole drift mobilities in HPGe crys-
tals [35–37], and dt takes a value of 10 ns.

4. dx , dy are then further modified using equations dx =
dx × weight, dy = dy × weight , where weight =
(5 volt/mm)/E , which is used to stretch dx, dy in a weak
field and shrink them in a stronger one.

5. The new position of the positive unit charge is then
updated to (x + dx, y + dy), which is saved in an object
of the FieldLine class.

6. Repeat step 1 to 5 using the updated starting point coor-
dinates until it moves out of the crystal or falls into an
undepleted region.

Changing the positive unit charge to a negative one would let
it propagate to the opposite direction.

Ignoring the influence of the germanium crystal structure,
charge carriers drift roughly along electric field lines. The
propagation path created this way can hence be regarded as
a rough estimation of the field line.

It is interesting to see in Fig. 18 that the field lines merge
in the middle of the detector and get collected at the point
contact, just as streams flow down to a river in a valley, which
is shown clearly with the 3D mesh in Fig. 19 and the greenish
region in Fig. 18 if color-printed.

5.6 Boundaries in between grid points

Sometimes, the edges between the side and end surfaces of a
cylindrical detector are tapered, shown as the small white tri-
angular regions at the corners of the color contours in Figs. 16
and 18. A crystal boundary line hence can go in between grid
points that are distributed along orthogonal lines, as shown
in Fig. 20. Assuming a simple case, where the grid points are
evenly spaced, the distances between them take fixed values,
dx and dy. The distances of a regular grid point to its previous
and next neighbors equal to each other: dx− = dx+ = dx .
In case of a point near the boundary, such as (i, j) shown in

Fig. 20 Variable distances between grid points in case of a boundary
line goes in between

Fig. 20, it is more precise to replace dx− with dx−
i when eval-

uating Eq. (18) along the x-axis, where dx−
i is the distance

to the boundary instead of the distance to the previous grid
point as shown in Fig. 20. Similarly, dy+ should be replaced
by dy+

i for a more precise evaluation of Eq. (18) along the
y-axis. This effectively moves nearby points on the vacuum
side right to be on the boundary, shown as the red dots in
Fig. 20. Such an operation can only be done if variable step
lengths are allowed for individual grid points.

5.7 Weighting potential in segmented detectors

In addition to the real electric field, the so-called weight-
ing potential is also of great interest, since it can be used
to calculate the electric charges on an electrode induced by
the drifting charge carriers inside a detector based on the
Shockley–Ramo’s Theorem [38–40]. It differs from a real
potential in two ways. First, it is purely determined by its
boundary conditions. The impurity concentration in a crystal
should be regarded as zero in calculating the weighting poten-
tial. Second, the voltage on the interested electrode should be
set to 1 volt, while the voltage on any other electrode should
be set to zero in calculating the weighting potential. The
weighting potential of an electrode is probably best demon-
strated using a segmented HPGe detector. Figure 21 shows
the cross section of a detector segmented evenly in six along
the azimuthal direction. The weighting potential of one of
the segment electrode is overlaid as a colored contour in a
logarithm scale. The white circle in the middle indicates the
core electrode of this cylindrical detector. The colored con-
tour does not quit reach the bottom boundary, simply because
the potential there is too close to zero to be color coded in a
logarithm scale.

5.8 Capacitance

The capacitance of a HPGe detector Cd is of special inter-
est due to at least two reasons. First, the electronic noise of
a HPGe detector increases as Cd increases [39,41,42]. Sec-
ond, Cd decreases as the detector bias voltage ramps up. The

123

Eur. Phys. J. C (2020) 80:230 Page 13 of 25 230

Fig. 21 Weighting potential distribution of a segmented detector (six
evenly distributed segments along the azimuthal direction)

reason becomes clear later in this section. This feature can be
used to measure the depletion voltage, Vd. It can also be used
to check if a detector operates normally during the ramping
up of its bias voltage. It is therefore an important task of a
field calculation package to calculate Cd given an arbitrary
bias voltage.

For an ideal one dimensional planar detector,

Cd = εA/d, (27)

where A is the area of an electrode of the detector and d is
the thickness of the depleted region in the detector, which
can be calculated as

d = √
2εVd/ρ. (28)

This relation can be derived from Eq. (7) with the bound-
ary condition (15) and (17). Cd hence is anti-proportional
to

√
Vd, and decreases as Vd increases, until d becomes the

thickness of the plan detector. After that, Cd stays at its mini-
mum sinced cannot increase anymore. The square data points
in Fig. 22 are calculated using Eqs. (27) and (28) given indi-
vidual bias values.

The depletion depth d can also be determined numerically
using the method described in the previous section. Cd can
be then calculated using Eq. (27). The results are the triangle
data points in Fig. 22.

For a detector configuration as complex as a point-contact
one, there is no analytic solution for Cd . The following
numerical method is used in GeFiCa to calculate Cd . It is
based on the fact that the energy stored in a charged capac-
itor U is equal to the overall work done W to move a total
amount of charges Q to the electrodes against the electric

Fig. 22 Capacitance per unit area versus bias voltage of an ideal planar
detector calculated in three different ways as detailed in the text. The
agreement between each other verifies the correctness of the numerical
calculation of the detector capacitance

field E caused by Q stored in the capacitor:

U = W. (29)

Given an arbitrary amount of charges q already stored in a
capacitor, the work done to increase it by an infinitesimal
amount dq is

dW = Vbiasdq = (q/Cd)dq. (30)

Integrating it on both sides yields

W =
∫ Q

0

q

Cd
dq = 1

Cd

∫ Q

0
qdq = Q2

2Cd
= CdV 2

bias

2
. (31)

The relation Cd = Q/Vbias is used in the last step of the
derivation to replace Q, an unknown variable, with Cd and
Vbias.

On the other hand, since the electric field energy density
is εE2/2, U can be expressed as

U = 1

2
ε

∫
V
E2dτ, (32)

where dτ is the volume integration element. For a planar
detector with a constant impurity, the integral can be solved
analytically as:

U = 1

2
εE2

∫
V

dτ = εV 2
biasA/(2d). (33)

Replacing U and W in Eq. (29) with Eqs. (33) and (31), we
derive Eq. (27).

The numerical version of Eq. (32) for an ideal planar detec-
tor in Cartesian coordinates is

U ≈ 1

2
ε

n∑
i=0

E2
i dxi A, (34)

123

 230 Page 14 of 25 Eur. Phys. J. C (2020) 80:230

Fig. 23 Rectangular interpolation of the potential at the point of inter-
est, VI , using potentials at its nearest grid points, V1, V2, V3 and V4 in
a 2D Cartesian grid

where i is the index of each grid point. Combining Eqs. (34),
(31) and (29), Cd per unit area A can be calculated as

Cd/A = ε

n∑
i=0

E2
i dxi/V

2
bias. (35)

This is implemented in function GeFiCa::X::GetC(). The
results are shown as the circle data points in Fig. 22. The
perfect agreement between all methods verifies two numer-
ical calculations in GeFiCa: the finding of the undepleted
region (or depleted region) and the calculation of Cd given
an arbitrary Vbias.

It is worth noting that the electric field E here is only due
to Q accumulated on the detector electrodes. It is different
from the actual field in a depleted detector which is the com-
bination of the fields from both Q and the space charge in
the crystal.

For a point-contact detector in Cylindrical coordinates,
the numerical version of Eq. (32) is

U ≈ 1

2
ε

n∑
i=0

E2
i ridridzi

∫ 2π

0
dθ. (36)

It is implemented in function RhoZ::GetC().

5.9 Interpolation between grid points

A numeric calculation can only give the field values right
at each grid point. Interpolations are needed to get the field
values at a random point that may not coincide with any grid
point. Figure 23 shows the equations to linearly interpolate
the potential value at the point of interest that falls in between
four points in a 2D Cartesian grid using the known potential
values on those four points, V1, V2, V3 and V4, taking into
account the distances between points, X,Y, x, y.

Fig. 24 Three ways that a boundary line goes through a unit grid
square. Within the crystal, the point of interest can fall into either a
triangular or a rectangular region marked as T or R

This method does not work for unit grid squares across
crystal boundaries that are neither in parallel with nor perpen-
dicular to grid lines, since those boundary lines can separate
a square into irregular shapes, the interpolation of which can
be complicated. There are three ways that such a boundary
line can go through a unit grid square as shown in Fig. 24.
Potentials at the crossing point, VA and VB , are equal to the
bias applied to that boundary. Most of the time the field out-
side of the crystal is not of interest. Within the crystal, the
point of interest can fall into either a triangular or a rectangu-
lar region marked as T or R, separated by blue dotted lines in
Fig. 24. If it falls into an R region, the interpolation method
shown in Fig. 23 can be used. If it falls into a T region, the
triangular interpolation shown in Fig. 25 can be used.

The potential at the point of interest, VI , in a T region can
be calculated as the weighted sum of potentials at the grid
points around, V1, V2 and V3. The weights, W1,W2 and W3

are the coordinates of the point of interest in the barycentric
coordinates defined by the three grid points around. Since
the Cartesian coordinates of all grid points and the point
of interest are known, W1,W2 and W3 can be calculated by
transforming the Cartesian coordinates of the point of interest
to the barycentric coordinates:

W1 = (y2 − y3)(x − x3) + (x3 − x2)(y − y3)

(y2 − y3)(x1 − x3) + (x3 − x2)(y1 − y3)
,

W2 = (y3 − y1)(x − x3) + (x1 − x3)(y − y3)

(y2 − y3)(x1 − x3) + (x3 − x2)(y1 − y3)
,

W3 = 1 − W1 − W2,

where (x1, y1), (x2, y2) and (x3, y3) are the Cartesian coor-
dinates of the grid points 1, 2 and 3 shown in Fig. 25, (x, y)
are the Cartesian coordinates of the point of interest.

In case of the vector field E , interpolations are done sep-
arately for individual components to get Ex , Ey at the point

of interest. The total E is then calculated as
√
E2
x + E2

y .

123

Eur. Phys. J. C (2020) 80:230 Page 15 of 25 230

Fig. 25 Triangular interpolation of the potential at the point of interest,
VI , using potentials at its nearest 3 grid points, V1, V2, V3

6 Implementation

6.1 Coding convention

The coding convention is similar to that of ROOT [43]. For
example,

• Classes and functions all start with capital letters. Word
boundaries are indicated by CamelCase.

• Classes names are all nouns.
• Function names are all verbs.
• Private member variables all start with letter f.
• Boolean variables/functions start with Is/Are.
• Indentation is made by three spaces instead of a hard tab

to ensure the same appearance of the codes in different
editors.

The following exceptions are used to increase the readability
of the codes to the user:

• Class names do not have prefix letters, such as T in
ROOT. Instead, the name space GeFiCa is used to avoid
name collision should GeFiCa be used together with other
libraries.

• Configurable member variables are made public to avoid
trivial getters and setters. Their first letters are capitalized.
Unlike private member variables, they do not have letter
f prefixed.

6.2 Class structure

As shown in Fig. 26, most of the GeFiCa classes belong
to two categories: grid and detector. Those that are derived
from class Grid are used to describe grid setups. Those that
are derived from class Detector are used to describe detector
configurations. The Grid class inherits a set of arrays from
the Points class to describe variables associated with individ-
ual grid points, such as coordinates and field values. Names
of its derived classes indicate the dimension and coordinates
used to construct the grid. For example, X is used for a one
dimensional grid in Cartesian coordinates,RhoZ is used for a

Fig. 26 Relation between GeFiCa classes

two dimensional grid in cylindrical coordinates. The Detec-
tor class inherits impurity setup from the Crystal class. Its
derived classes, such asPointContact, inherit from it the com-
mon detector setups, such as bias voltages. A grid class can
get boundary conditions and the impurity distribution from a
corresponding detector class through a virtual function inter-
face defined in the Grid class:

virtual void Grid : :SetupWith(Detector&);

This is demonstrated in the following code snippet:

RhoZ grid ; / / create 2D Cylindrical grid
PointContact detector ; / / create detector
/ / setup grid with detector configuration
grid .SetupWith(detector) ;

The data flow can be the other way around, that is, a detec-
tor class gets grid setups from a grid class. However, since
it is the grid that the SOR process updates instead of the
detector configuration, this is a less natural choice. With the
current data flow direction, the SOR can then be performed
by simply calling

grid .SuccessiveOverRelax () ;

Another choice would be to combine the detector and grid
classes. For example, instead of having both PointContact
and RhoZ, we can create a single class called PointContac-
tRhoZ. The advantage of this approaches is that there is no
need to pass information from the latter to the former through
some interface functions. The drawback is the lack of clarity,
the same class object will be used for both detector config-
uration and grid operation. Considering the main purpose of
GeFiCa is to demonstrate the logic, methods, and techniques
for field calculation, we chose not to use this approach.

123

 230 Page 16 of 25 Eur. Phys. J. C (2020) 80:230

To its root, this is actually a question of to what extend we
want to utilize the object-oriented (OO) coding style. Think
about two extreme cases. First, we can write everything in a
single main function. Second, we can create a class for each
individual functionality, such as the impurity profile and the
bias voltage. The first approach relies on careful documenta-
tion to clarify its internal logic. The second introduces many
trivial interfaces to pass information between classes. A bal-
anced approach in between is adopted for GeFiCa.

6.3 Data structure and I/O

Minimally, two float numbers are needed for each point in a
one dimensional grid with a fixed interval between its points:
one for the spacial coordinate and another for the electric field
potential. The number of points in a grid must be changeable
according to the dimension of a detector and the precision of
a calculation. This demands the use of arrays that can change
in size to store variables of individual points. Even though a
float number is precise enough to hold the final result of a
numerical calculation, a double is preferred to preserve pre-
cision during iterations of a SOR process. A standard C++
vector<double> is used in GeFiCa for each variable to pro-
vide enough precision and flexibility.

Given a grid with variable step sizes as shown in Fig. 13,
one more variable is needed for each point to store the dis-
tance to its next neighbor, dx+

i . The distance to its previous
neighbor is saved as dx+

i−1 in its previous point. In GeFiCa,
however, the distances to both the previous and next neigh-
bors, dx− and dx+, are saved, since they may be different
for some of the boundary points as detailed in Sect. 5.6. This
certainly creates redundancy in storage for points away from
boundaries. However, since output files of GeFiCa are saved
in ROOT format instead of plain ASCII, such redundancy
does not increase their sizes much due to the gzip compres-
sion algorithm used in ROOT to save equal-value variables
only once.

In principle, electric field values can be calculated from
the potential using Eq. (4) when needed. However, given their
frequent usage, their values on each point are calculated and
saved in GeFiCa after the SOR calculation for the potential.

For a three dimensional grid with a variable step size,
14 std::vectors with a double precision are needed in total
to save three coordinates, 3 × 2 distances to previous and
next points, one potential, one total electric field and its three
components. They are public member variables in the class
Points inherited by all grid classes shown in Fig. 26, includ-
ing those representing lower dimensional grids, where vari-
ables for higher dimensions are not used at all. Since the C++
vector does not allocate memory if it has no element, there
is no penalty in storage size in this solution. An alternative
is to create Points1D, Points2D, Point3D, and consequently,
Grid1D, Grid2D, Grid3D for various dimensions. This com-

plicates the overall class structure unnecessarily, hence is not
used in GeFiCa.

A few more vectors are added in the Grid class to record
space charge densities in individual grid points, as well as
flags to tell whether a point is in or out of a crystal, and
whether it is in or out of the depleted region.

As described in Sect. 5.5, an electric field line can be saved
in a series of points with variable distances between them.
That is why the class FieldLine inherits the data structure
from Points, as shown in Fig. 26.

The Grid and the Detector classes are both daughters of
the TNamed class in ROOT, which inherits the capability to
stream its data members for I/O from the TObject class in
ROOT. Consequently, all concrete grid and detector classes
can be directly saved into a standard ROOT file using one
line of C++ as shown in the following code snippet:

TFile f i le ("ICPC. root" ,"recreate") ;
detector .Write () ; / / save config .
grid .Write () ; / / save grid
f i le .Close () ;

As described previously, repeated numbers in the ROOT file
are compressed to save storage space. Detailed benchmark
of the file size can be found in Sect. 8.2. After opening the
ROOT file in a ROOT interactive session, one can use the
Cling meta command .ls to list the saved objects:

root ICPC. root
root [] . ls
TFile∗∗ ICPC. root
TFile∗ ICPC. root
KEY: GeFiCa: : PointContact pc;1 detector
KEY: GeFiCa: :RhoZ rhoz;1 2D grid . . .

and directly use the loaded objects (rhoz andpc) to investigate
and visualize the field and the detector:

root [] TTree ∗t = rhoz−> GetTree()
root [] t−> Draw("c2:c1:v" ,"" ,"colz")
root [] pc−> Draw()

The first line creates a TTree object t out of the saved field
values in the rhoz object. The second line draws the potential,
v, on the first (y-axis) and second (x-axis) coordinates, c1 and
c2, as a colored contour along z-axis (the “colz” option), as
shown in Fig. 27.

The price to pay for all these convenience is that the objects
saved in the ROOT file can only be loaded without warning
message when the compiled GeFiCa library can be found
and automatically loaded by ROOT. The way to realize this
is detailed in Sect. 6.6.

123

Eur. Phys. J. C (2020) 80:230 Page 17 of 25 230

Fig. 27 The color contour of the potential field of an ICPC detector
drawn with TTree::Draw(“c2:c1:v”,“”,“colz”)

6.4 Detector configurations

Two pieces of information are needed for electric field cal-
culation: first, boundary conditions, and second, the space
charge distribution.

Boundary conditions can be set through the detector
geometry and voltages on electrodes. Take the previously
definedPointContact detector as an example, its basic dimen-
sions can be set as

detector .Radius = 3.45∗ cm;
detector .Height = 5.05∗ cm;
detector . PointContact R = 1.4∗ mm;
detector . PointContact H = 0.1∗ mm;

A full list of geometry parameters that can be set for a Point-
Contact detector is shown in Fig. 28. Its bias voltages can be
set as an array:

/ / point−contact voltage
detector . Bias[0] = − 2.5∗kV;
/ / surface contact voltage
detector . Bias[1] = 0∗volt ;

In case of a segmented detector, the bias voltage array can
have more than two elements. The index of an element can
be kept the same as the corresponding segment identification
number.

As described in detail in Sect. 2, it is reasonable to use a
first-order polynomial to approximate the space charge dis-
tribution in a HPGe crystal. With this simplification, we just
need to specify the impurities at the top and the bottom of a
crystal given by the manufacturer. For example,

detector .BottomImpurity=3e9/cm3;
detector .TopImpurity=7e9/cm3;

The impurity level at a specific axial position is interpolated
in GeFiCa based on these two numbers. In case of a small

Fig. 28 Cross section along z-axis of an inverted coaxial point-contact
HPGe detector, and parameters describing its dimensions. To shorten
the names, width is represented as a single capital case “W”, height
“H”, and radius “R”

crystal, the impurity can be regarded as a constant. Its average
impurity can be set as

detector .SetAverageImpurity(3e9/cm3) ;

6.5 Units and constants

We have seen in previous code snippets that an input param-
eter in GeFiCa is a product of a number and a unit. Common
units and constants for field calculation, together with their
conversion rules, are defined in GeFiCa/src/Units.h. The fol-
lowing is a snippet of the file:

namespace GeFiCa {
static const double C=1; / / Coulomb
static const double cm=1;
static const double cm3=cm∗cm∗cm;
static const double mm=0.1∗cm;
static const double volt=1;
static const double kV=1000∗volt ;
/ / vacuum permittivity [C/ volt /cm]
static const double epsilon0
= 8.854187817e−14∗C/ volt /cm;
/ / dielectric constant of Ge
static const double epsilonR=16;

}

The advantage of this unit system is threefold. First, the code
is self-explainable, there is no ambiguity in the unit of an
input value. Second, the user has freedom to choose units,
such as “mm” instead of “cm”, or “kV” instead of “volt”.
Otherwise, he or she has to use the set of units used for
internal calculation. Third, since the unit conversion rules are
pre-defined, there is no need to worry about them when using
input parameters for internal calculations. The programmer
can focus on the logic instead of unit conversion. This way
of handling units is adopted from Geant4 [22–24]. Most of

123

 230 Page 18 of 25 Eur. Phys. J. C (2020) 80:230

the units and constants have been defined in Geant4 already.
However, since only a small subset of the units are useful
for field calculation, they are re-defined in GeFiCa to avoid
unnecessary dependence on Geant4.

6.6 Compilation and installation

GeFiCa relies on ROOT to realize C++ and Python scripting,
efficient I/O and plotting. It has to be compiled against ROOT
libraries. This is achieved through a simple Makefile that uses
the root−config executable available from any successfully
installed ROOT package to get the location of ROOT libraries
and necessary compilation flags. The compilation process is
as simple as

cd / path / to /GeFiCa/ src && make

After a successful compilation a shared C++ library,
libGeFiCa.so, can be found in /path/to/GeFiCa/src. Once
its location is added to the LD_LIBRARY_PATH environ-
ment variable (or DYLD_LIBRARY_PATH in MacOS), the
library can be automatically loaded only when needed as any
other ROOT libraries in ROOT interactive sessions or scripts
thanks to the rootmap and pcm files [44] generated by the
make process in the same directory as the library.

6.7 Supported OS

Since ROOT is available in the three common operating sys-
tems, Linux, Windows and MacOS, in principle, GeFiCa
should be able to be compiled in all of them as well. How-
ever, since GeFiCa relies on a simple Makefile to compile,
it cannot be directly compiled through the native Windows
compilation system. Instead, it can be compiled in a Windows
Subsystem for Linux (WSL). To date, GeFiCa has been com-
piled successfully in CentOS 6 and 7, MacOS 10.12, 10.13,
10.14, and Ubuntu 18.04 as a WSL.

6.8 Code accessibility

The codes of GeFiCa are hosted online at GitHub [45]:
https://github.com/jintonic/gefica. They can be downloaded
directly from the web page or through git. GeFiCa is release
under the MIT License [46]. It can be freely used without
any warranty as long as the license is distributed along with
it.

6.9 Code documentation

A git branch gh-pages is used to host the homepage code
for GeFiCa. The homepage is available under a customized
domain name: http://physino.xyz/gefica. It lists three main
resources about GeFiCa that one can get help from: the

GeFiCa repository page hosted on GitHub, the code docu-
mentation hosted on https://codedocs.xyz, and the user man-
ual hosted on https://readthedocs.org.

There is a README.md file in each directory in GeFiCa
to explain the contents of the directory written in GitHub
Flavored Markdown format [47]. They are rendered to web
pages automatically in GitHub. A user can quickly get help
with or without the source code.

Explanations of GeFiCa classes and variables are embed-
ded in the source code as C++ comments using the Doxy-
gen [48] convention. They can be rendered by Doxygen
into nicely formatted documentations locally or on https://
codedocs.xyz. The online version is updated automatically
once new codes are pushed to the GitHub repository.

The user manual is written in restructured text format
and can be rendered to web pages locally or on https://
readthedocs.org. The online version is updated automatically
once new documentation is pushed to the GitHub repository.

In addition to these, example codes are shipped with
GeFiCa as ROOT macros as described in detail in the
next section to demonstrate the usage of individual GeFiCa
classes.

6.10 Macros and scripts

A modern C++ interpreter, cling [49], has been created
and adopted as the back-end of the interactive session of
ROOT [33] since the version 6 of it. A user can run C++
snippets, sometimes called ROOT macros or scripts, inter-
actively in cling without writing and compiling the “main”
function. With immediate feedback after the execution of
each line of a script, a user can learn and experiment a new
C++ class, a function, or simply a syntax easily. To fulfill its
educational purpose, GeFiCa is compiled as a ROOT library.
All snippets in previous sections demonstrating the configu-
ration of a detector or the operation of a grid can be run as
they are in cling.

ROOT also provides a Python extension module, PyROOT,
that allows the user to interact with any ROOT class from the
Python interpreter. For users who prefer the Python inter-
preter to cling, they can call GeFiCa classes with Python
syntax directly in the standard Python interpreter.

It is worth noting that cling comes with a Jupyter [50]
kernel, which makes it possible to run GeFiCa scripts in a
Jupyter notebook with either C++ or python syntax.

All concrete grid and detector classes in GeFiCa inherit
the capability to inspect themselves from the TObject class in
ROOT. Some standard functions in TObject, such asDump(),
can be used to check the default or user-specified configura-
tions of a grid or detector object, as shown in Listing 1. The
first column of the output are the member variables of the
GeFiCa::X class. The second are their current values. The
last are explanations of those variable. These explanations

123

https://github.com/jintonic/gefica
http://physino.xyz/gefica
https://codedocs.xyz
https://readthedocs.org
https://codedocs.xyz
https://codedocs.xyz
https://readthedocs.org
https://readthedocs.org

Eur. Phys. J. C (2020) 80:230 Page 19 of 25 230

are written as C++ comments after the member variables.
They can be parsed by both Doxygen and ROOT to generate
code documentation in various formats and contexts.

Macros are organized in sub-folders in GeFiCa/examples/
to demonstrate the usage of GeFiCa classes. The planar/,
trueCoaxial/, hemispherical/, pointContact/, and segmented/
folders are used to show how to configure specific types of
HPGe detectors and then calculate the fields in them. The
analytic/ and the fenics/ folders contains macros that are
independent of the GeFiCa libraries. The macros in the for-
mer demonstrate how to calculate and visualize the field dis-
tribution in simple HPGe detectors using ROOT. The latter
shows Python codes to calculate and visualize the field dis-
tribution in a simplified point-contact geometry using FEn-
iCS [19]. All field distributions shown in this work are gen-
erated using these macros. A user can learn the topics by at
first running these macros to reproduce plots in this work,
and then modifying them to meet his/her own needs.

7 Code verification

A common way to verify the saneness of a complex theory
in physics is to consider extreme conditions, under which the
theory can be simplified and compared to predictions based
on common sense. Take the field in a point-contact detector
as an example, there are two extreme cases where the field in
certain part of the detector can be regarded as the same as that
in a planar or a true-coaxial detector. This makes it possible to
compare the numeric calculation of a point-contact detector
field directly with analytic solutions.

7.1 Comparison with analytic solutions

In the first extreme case we consider a point-contact detector
that takes a pancake-like shape, that is, its thickness is much
smaller than its diameter. Furthermore, its “point-contact”
covers almost the entire bottom end surface. The electric
potential in such a detector is shown in the bottom plot
in Fig. 29. At the radial center of the detector, the field is
essentially the same as that in a planar detector that has the
same thickness and impurity concentration. In the top plot
in Fig. 29 the analytic solution of such a planar detector
is overlaid on top of the numerical result of the pancake-
like “point-contact” detector along the z (axial) positions at
r (radial position) = 0.

In the second case let us consider a point-contact detector
that looks like a thin stick, that is, its diameter is much smaller
than its height. Furthermore, let’s make its “point-contact” as
deep into the crystal as possible. The potential distribution in
such a detector calculated numerically is shown in the right
plot in Fig. 30. Far away from the top end of the detector, the
field is essentially the same as that in a true-coaxial detector

Fig. 29 Top: Comparison of the electric potential calculated numeri-
cally in a pancake-like “point-contact” detector with the analytic solu-
tion of a planar detector that has the same thickness (or height) and
impurity concentration. Bottom: The electric potential distribution cal-
culated numerically in the pancake-like detector, the “point-contact”
of which is artificially enlarged to cover almost the entire bottom end
surface

that has the same radius and impurity concentration. In the
left plot in Fig. 30 the analytic solution of such a true-coaxial
detector is overlaid on top of the numerical result of the thin-
stick-like “point-contact” detector along r (radial position) at
z (axial position) = 5 mm above the bottom surface.

7.2 Comparison with fieldgen

Even though the perfect matches between the analytic solu-
tions and the numerical results in both cases are convinc-
ing evidences of the correctness of the numerical calcula-
tion implemented in GeFiCa, it is worth noting that a con-
stant impurity concentration throughout the entire crystal is
assumed to make the analytic solutions possible. In case of an
arbitrary impurity distribution, no simple analytic solution is
available, the numerical calculation in GeFiCa is compared
to that of fieldgen [1,14], a thoroughly examined and widely
accepted package in the field, given identical point-contact
detector configurations.

The biggest difference between GeFiCa and fieldgen in
the aspect of numerical calculation is probably the setup of
grid points. In case of fieldgen, the grid points along the radial
direction, r , of a detector start from r = 0 and end at r = the
radius of the detector. In case of GeFiCa, the grid points are
in the range of [−radius, +radius] and there is no grid point at
r = 0 to avoid setting artificial boundary conditions at r = 0.
Due to this difference, there is no one-to-one correspondence
between a grid point in GeFiCa and that in fieldgen. In order
to make a point-to-point comparison, linear interpolation is
used to get the total electric field strength at a fieldgen point
from two nearby GeFiCa points, the interpolated value is
then compared to the fieldgen value at the same point. Their

123

 230 Page 20 of 25 Eur. Phys. J. C (2020) 80:230

Listing 1 A truncated ROOT interactive session displaying the contents of an object of the GeFiCa::X class.

root [] GeFiCa: :X x
(GeFiCa: :X &) Name: x Title : 1D Cartesian coordinate
root [] x. Dump ()
==> Dumping object at : 0x00007f76e5d80150, name=x, class=GeFiCa: :X
Src −>7f76e5d802a8 −(net impurity concentration)x |Qe| / epsilon
N1 101 number of points along the 1st coordinate
N2 0 number of points along the 2nd coordinate
N3 0 number of points along the 3rd coordinate
MaxIterations 5000 maximal iterations of SOR to be performed
RelaxationFactor 1.95 within (0 ,2) , used to speed up convergence
Tolerance 1e−07 SOR stops when error<Tolerance
. . .

Fig. 30 Left: Comparison of the electric potential calculated numeri-
cally in a thin-stick-like “point-contact” detector with the analytic solu-
tion of a true-coaxial detector that has the same radius and impurity con-
centration. Right: The electric potential distribution calculated numer-
ically in the thin-stick-like detector, the “point-contact” of which is
artificially prolonged along almost the entire height of the crystal

relative difference in percentage is shown as colored contour
in Fig. 31.

The largest difference is about 8.5% at the top right corner
of the point-contact. This point is removed from Fig. 31 so
that subtle differences between fieldgen and GeFiCa are more
visible in the figure. The second largest difference is about
2.5% at an adjacent point, shown as the red spot in Fig. 31.

Fig. 31 Relative difference between the electric potential distributions
calculated using fieldgen and GeFiCa for an identical point-contact
detector configuration

The difference quickly falls below 0.1% only a few points
away from the corner, which translates to about one millime-
ter in length given the 0.1 mm distance between grid points.
Such difference is most probably due to different treatments
in fieldgen and GeFiCa on grid points near boundaries.

Fortunately, the difference is of little importance in prac-
tice since there is no such sharp corner inside any detector in
reality. Predictions of GeFiCa and fieldgen in the bulk of the
detector are essentially identical.

8 Performance

8.1 Relaxation factor

As described in Sect. 5.2, the number of iterations needed for
a successive relaxation process to converge can be reduced

123

Eur. Phys. J. C (2020) 80:230 Page 21 of 25 230

Fig. 32 Number of SOR iterations versus relaxation factor

by introducing a relaxation factor in between [1, 2). Fig-
ure 32 shows the number of iterations for a successive over-
relaxation (SOR) process to converge as a function of the
relaxation factor. Each data point in the figure represents the
result from a numerical calculation of the field in an ideal
planar detector. Data points that are connected by lines in
between are from calculations sharing the same number of
grid points.

A common trend shared by all the lines is that there is a
point where the number of iterations is minimized. That is
where GeFiCa reaches its best performance. As the number
of grid points increase from 101 to 601, the relaxation factor
corresponding to the minimal iteration numbers increases
from around 1.94 to 1.99. The default value of the relaxation
factor is set to 1.95 in GeFiCa. A user can change it using
the following line of code if desired.

grid . RelaxationFactor=1.99;

The gain in performance by selecting an appropriate relax-
ation factor becomes more prominent when the number of
grid points becomes larger. Take the up most curve in Fig. 32
as an example, which corresponds to calculations done with
the finest grid, when the relaxation factor changes by only
0.06 from 1.93 to 1.99, the number of iterations reduces from
about 10,000 to less than 2000. While the lowest curve in
Fig. 32 is almost flat around 1.94, that is, the relaxation fac-
tor cannot help much to gain speed for calculations with a
very coarse grid. This is not a problem since those calcula-
tions are fast already.

As pointed out in Ref. [51], it is often hard or even
not possible to compute in advance the optimized relax-
ation factor for a fast convergence. A heuristic estimation,
FR = 2 − O(dx), seems to work as an initial guess for
the two dimensional calculation for point-contact detectors,
where dx is the step length between two adjacent grid points.

After every 100 iterations, GeFiCa prints the overall dif-
ference (error) of potentials at all grid points between current

and previous iterations. When the error is smaller than a tar-
get tolerance (1 × 10−7 V by default), the SOR is regarded
as converged, the calculation stops there, and the CPU time
used for the calculation is printed out on screen as shown in
the terminal output below:

root [0] .x calculateFields . cc
Processing calculateFields . cc . . .
Info in < GeFiCa: :RhoZ: : SuccessiveOverRelax>:
Start . . .

0 steps , error : 1.0e+00 (tolerance : 1e−07)
100 steps , error : 4.8e−03 (tolerance : 1e−07)
200 steps , error : 2.7e−03 (tolerance : 1e−07)

.

.

.
2000 steps , error : 1.0e−07 (tolerance : 1e−07)
2004 steps , error : 1.0e−07 (tolerance : 1e−07)
Info in <GeFiCa: :RhoZ: : SuccessiveOverRelax>:
CPU time: 23.2 s

This terminal output is associated with the calculation used
to generate Fig. 31. The overall number of grid points is
349,140. The CPU time used for the calculation is about 23
s in a Linux server with an Intel Xeon Gold 5118 CPU at
1 GHz. The relaxation factor chosen for this calculation is
1.994.

8.2 Output file size

The output of fieldgen used to generate Fig. 31 is saved as a
simple ASCII file that is 8.1 MB in size. The detector config-
uration is saved as a short header of the file. The rest of the file
are six columns of values of the grid point positions (radial
and axial), the voltage, the overall electric field strength, and
its radial and axial components.

As described in Sect. 6.3, the detector and grid objects in
GeFiCa can be directly saved in a standard ROOT file. Its
contents can be printed and visualized in a ROOT interactive
session as demonstrated in the code snippets in Sects. 6.3
and 6.10. In addition to the information saved in a fieldgen
output, a GeFiCa output also contains the intervals between
grid points, flags indicating whether a point is depleted or
not, etc. It also contains about twice more grid points than
fieldgen. In total, the amount of information saved in GeFiCa
is about four times more than that saved in the fieldgen output.
The size of the GeFiCa output ROOT file used to generate
Fig. 31 is 9.2 MB, only slightly larger than that of the fieldgen
output file, thanks to the gzip algorithm used to compress a
ROOT file mentioned in Sect. 6.3.

9 Extendability and limitation

Let’s take a realistic planar detector configuration shown in
Fig. 33 as an example to demonstrate the procedure of extend-
ing GeFiCa for a new type of detector.

123

 230 Page 22 of 25 Eur. Phys. J. C (2020) 80:230

Fig. 33 Configuration of a realistic planar detector that has two side
wings for the handing of the detector. The top and bottom surfaces are
electrical contacts, the side surfaces are passivated

The top and bottom surfaces of the detector are covered
with a thin layer of aluminium to form the electric con-
tacts. All the side surfaces are covered with a thin layer of
amorphous germanium for passivation purpose. The two side
wings can be used for handling the detector without touching
its sensitive surfaces [52]. Since they are thin compared to
the overall thickness of the detector, the electric field distri-
bution inside the detector can hence be approximated by that
in an ideal 1D planar detector. However, if our intention is to
study the influence of the thickness of the wings on the elec-
tric field, we need at least a 2D grid in Cartesian coordinates
to perform the numerical calculation, which can be achieved
with the following steps.

At first, a class called XY that represents the dimension
and coordinates needs to be created. It inherits all member
variables in its base class Grid that define the grid. Since the
numerical expression of Poisson’s equation (Eq. 5) depends
on dimensions and coordinates used for the calculation, a
protected virtual function, void OverRelaxAt(size_t idx), in
Grid needs to be overwritten in XY, which takes care of the
updating of the field value at each grid point indexed by idx.

Secondly, a class called TopHat that describes the geome-
try of the detector needs to be created. It inherits the member
variables that hold voltages values of all electrodes from its
base class Detector. It also inherits the impurity distribu-
tion from the class, crystal. A public member function void
Draw() in Detector needs to be overwritten in TopHat to
visualize the geometry setup.

At last the public virtual function in Grid called void
SetupWith(Detector&) needs to be overwritten in XY, which
takes the boundary conditions and impurity distribution from
TopHat to construct and initialize the grid for the calculation.

For completeness, a folder called TopHat is recommended
to be created underGeFiCa/examples, which contains ROOT
or Python scripts demonstrating the usage of XY and TopHat.

Given its extendability, there is no limitation on GeFiCa
from the functionality point of view. From the education point

of view, however, there is currently no function in GeFiCa
demonstrating the adaptive grid configuration that automat-
ically updates distances between grid points over iterations
based on the strength of local electric field. Note that there
is no fundamental limitation from GeFiCa inhibiting doing
so, since there are separated member variables in the grid
class to hold distances from a grid point to its neighbors in
all directions. Practically, GeFiCa is already fast and precise
enough with fixed step length for common HPGe configura-
tions. This function can be added in if necessary.

10 Summary

The new educational program, GeFiCa, has been created to
demonstrate analytic and numeric methods to calculate static
electric fields and potentials in HPGe detectors. It is freely
available from http://physino.xyz/gefica and can be installed
in three major operating systems, Linux, MacOS and Win-
dows, as a CERN ROOT [33] library extension. Powered
by ROOT, GeFiCa allows its users to explore in detail the
calculation procedure by executing C++ or Python code
snippets in ROOT interactive sessions or Jupyter notebooks
without compilation. Example code snippets are shipped
together with the library to demonstrate calculations for com-
mon detector configurations, and to visualize the resulting
field distributions in graphs or color contours. In addition
to field calculations, GeFiCa offers functionalities to calcu-
late the HPGe detector depletion voltage, undepleted region,
capacitance, etc., that are not available from general-purpose
field calculation programs, such as Maxwell3D and FEn-
iCS. Compared to open projects that are also specialized
in HPGe field calculation, such as fieldgen and SSD, etc.,
GeFiCa offers a ROOT-based C++ solution that is equally
accurate and efficient, and shipped with a large amount of
documentations and examples that are not readily available
in others.

This article was written to provide an entry level review
of methods and tools available at the moment, with the hope
that its readers feel comfortable to make an educated choice
of simulation tools best suited for the task at their hands.

Acknowledgements The authors thank David Radford at the Oak
Ridge National Laboratory for his patient instruction in various aspects
of the field calculation, Oliver Schulz at the Max-Planck-Institut für
Physik for his introduction of the Julia language and the SSD package,
Christopher Haufe and Anna Reine at the University of North Carolina
at Chapel Hill for their instruction on how to use FEniCS to calculate
fields in a point-contact detector. This work is supported by NSF award
OIA-1738695 and OISE-1743790, and the Office of Research at the
University of South Dakota. Computations supporting this project were
performed on High Performance Computing systems at the University
of South Dakota, funded by NSF award OAC-1626516.

123

http://physino.xyz/gefica

Eur. Phys. J. C (2020) 80:230 Page 23 of 25 230

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: Data used to
create plots in this article can be generated using the program described
in the article.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

Appendix A: Poisson’s equation in curvilinear coordi-
nates

The Poisson’s equation in spherical coordinates reads,

1

r2

∂

∂r

(
r2 ∂V

∂r

)
+ 1

r2 sin θ

∂V

∂θ

(
sin θ

∂V

∂θ

)

+ 1

r2 sin2 θ

∂V 2

∂2φ
= −ρ(r, θ, φ)

ε
,

(A.1)

where r, θ ∈ [0, π], φ ∈ [0, 2π) are the radial distance from
the origin, the polar angle and the azimuth angle, as defined
in the left plot of Fig. 34.

The Poisson’s equation in cylindrical coordinates reads,

1

r

∂

∂r

(
r
∂V

∂r

)
+ 1

r2

∂V 2

∂2φ
+ ∂V 2

∂2z
= −ρ(r, φ, z)

ε
, (A.2)

where r, φ ∈ [0, 2π), z are the radial distance from the ori-
gin, the azimuth angle, and the height, as defined in the right
plot of Fig. 34. A more commonly used symbol of the radial
distance in the cylindrical coordinate system is ρ. However,

Fig. 34 Definitions of spherical coordinates (left) and cylindrical ones
(right)

r is used here instead of ρ to avoid being confused with the
space charge density, which is denoted as ρ as well.

Appendix B: Iteration relations

In 3D Cartesian coordinates, the potential at a grid point after
the i th successive relaxation iteration, Vi+1, can be expressed
as

Vi+1 =
{

ρ

2ε
+

[
Vi (x + dx+)

dx+
+Vi (x + dx−)

dx−

]
1

dx+ + dx−

+
[
Vi (y + dy+)

dy+
+ Vi (y + dy−)

dy−

]
1

dy+ + dy−

+
[
Vi (z + dz+)

dz+
+ Vi (z + dz−)

dz−

]
1

dz+ + dz−

}

/

[(
1

dx+
+ 1

dx−

)(
1

dx+ + dx−

)

+
(

1

dy+
+ 1

dy−

) (
1

dy+ + dy−

)

+
(

1

dz+
+ 1

dz−

) (
1

dz+ + dz−

)]
,

where x, y, z are coordinates, dx+, dy+, dz+ are dis-
tances to the next grid points, dx−, dy−, dz− distances to
the previous.

To achieve this in a program, two arrays are needed as
explained at the end of Sect. 5.2. In case of forward substitu-
tion, half of the points around x have already been updated
before the calculation of Vi+1(x), that is, half of the i in
the equation above should be replaced by i + 1. It is a bit
of work to keep track of which points have been updated in
the equation above. In a program, however, this is achieved
automatically if only one array of V is used to hold values at
all grid points. Since there is no need to keep track of which
points have been updated in this case, one can safely drop the
subscription i, i + 1 in the equation above. This holds true
for all equations hereafter.

In a 1D cylindrical coordinate, the potential at a grid point
after the i th successive relaxation iteration, Vi+1, can be
expressed as

Vi+1 = ρ

ε

dr+dr−
2

+Vi (r + dr+) − Vi (r − dr−)

2r
/

(
1

dr+
+ 1

dr−

)

+
[
Vi (r + dr+)

dr+
+ Vi (r − dr−)

dr−

]
/

(
1

dr+
+ 1

dr−

)
,

where r is the coordinate. dr+ is the distance to the next grid
point, dr− the distance to the previous.

In 3D cylindrical coordinate, the potential at a grid point
after the i th successive relaxation iteration, Vi+1, can be

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 230 Page 24 of 25 Eur. Phys. J. C (2020) 80:230

expressed as

Vi+1 =
{

ρ

2ε
+ 1

r

Vi (r + dr+) − Vi (r + dr−)

dr+ + dr−

+
[
Vi (r + dr+)

dr+
+ Vi (r + dr−)

dr−

]
1

dr+ + dr−

+
[
Vi (θ + dθ+)

dθ+
+ Vi (θ + dθ−)

dθ−

]
1

dθ+ + dθ−
1

r2

+
[
Vi (z + dz+)

dz+
+ Vi (z + dz−)

dz−

]
1

dz+ + dz−

}

/

[(
1

dr+
+ 1

dr−

) (
1

dr+ + dr−

)

+
(

1

dθ+
+ 1

dθ−

) (
1

dθ+ + dθ−
1

r2

)

+
(

1

dz+
+ 1

dz−

) (
1

dz+ + dz−

)]
,

where r, θ, z are coordinates, dr+, dθ+, dz+, are step lengths
to the next grid points, dr−, dθ−, dz− step lengths to the
previous.

In a 1D spherical coordinate, the potential at a grid point
after the i th successive relaxation iteration, Vi+1, can be
expressed as

Vi+1 = ρ

ε

dr+dr−
2

+Vi (r + dr+) − Vi (r − dr−)

r
/

(
1

dr+
+ 1

dr−

)

+
[
Vi (r + dr+)

dr+
+ Vi (r − dr−)

dr−

]
/

(
1

dr+
+ 1

dr−

)
,

where r is the coordinate, dr+ is the distance to the next grid
point, dr− the distance to the previous.

In 3D Spherical Coordinate, the potential at a grid point
after the i th successive relaxation iteration, Vi+1, can be
expressed as

Vi+1 =
{ ρ

2ε
+ 2

r

Vi (r + dr+) − Vi (r + dr−)

dr+ + dr−

+ 1

r2 tan θ

Vi (θ + dθ+) − Vi (θ + dθ−)

dθ+ + dθ−

+
[
Vi (r + dr+)

dr+
+Vi (r + dr−)

dr−

]
1

dr++dr−

+
[
Vi (θ+dθ+)

dθ+
+Vi (θ + dθ−)

dθ−

]
1

dθ++dθ−
1

r2

+
[
Vi (φ+dφ+)

dφ+
+Vi (φ+dφ−)

dφ−

]
1

dz++dz−
1

r2 sin2 θ

}

/

[(
1

dr+
+ 1

dr−

) (
1

dr+ + dr−

)

+
(

1

dθ+
+ 1

dθ−

) (
1

dθ+ + dθ−
1

r2

)

+
(

1

dφ+
+ 1

dφ−

)(
1

dφ+ + dφ−

)
1

r2 sin2 θ

]
,

where r, θ, φ are coordinates, dr+, dθ+, dφ+, are the step
lengths to the next grid points, dr−, dθ−, dφ− to the previous.

References

1. D. Radford, icpc_siggen. https://github.com/radforddc/icpc_
siggen

2. B. Bruyneel, B. Birkenbach, P. Reiter, Eur. Phys. J. A 52, 3 (2016)
3. M. Salathe, Study on modified point contact germanium detec-

tors for low background applications. Ph.D. thesis, Ruprecht-Karls-
Universität Heidelberg (2015)

4. G.K. Giovanetti, P-type point contact germanium detectors and
their application in rare-event searches. Ph.D. thesis, University of
North Carolina (2015)

5. I. Abt, A. Caldwell, D. Lenz, J. Liu, X. Liu, B. Majorovits, Eur.
Phys. J. C 68, 609 (2010)

6. D. Radford, Large inverted-coaxial point-contact germanium
detectors (2017). https://conferences.lbl.gov/event/121/session/4/
contribution/18

7. GERDA Collaboration, M. Agostini et al., Nucl. Part. Phys. Proc.
1876, 273–275 (2016). 37th International Conference on High
Energy Physics (ICHEP)

8. M.J.D. Collaboration, N. Abgrall et al., Adv. High Energy Phys.
2014, e365432 (2014)

9. CoGeNT Collaboration, C.E. Aalseth et al., Phys. Rev. Lett.
106(13), 131301 (2011)

10. S. Kerman, V. Sharma, M. Deniz, H. Wong, J.W. Chen, H. Li, S.
Lin, C. Liu, Q. Yue, Phys. Rev. D 93, 113006 (2016)

11. Q. Yue, K. Kang, J. Li, H.T. Wong, J. Phys. Conf. Ser. 718(4),
042066 (2016)

12. AGATA, https://www.agata.org
13. GRETA, http://greta.lbl.gov
14. D. Radford, Majorana siggen (2015). https://indico.mpp.mpg.de/

event/3121/session/6/contribution/33
15. D. Weisshaar et al., Nucl. Instrum. Methods Appl. (2016)
16. SIMION Ion and Electron Optics Simulator, http://simion.com/
17. ANSYS Maxwell: low frequency electromagnetic fields. http://

www.ansys.com/products/electronics/ansys-maxwell
18. M. Boswell et al., IEEE Trans. Nucl. Sci. 58(3), 1212 (2011)
19. FEniCS, https://fenicsproject.org/
20. Solid state detector field and charge drift simulation in Julia: Julia-

HEP/SolidStateDetectors.jl (2019). https://github.com/JuliaHEP/
SolidStateDetectors.jl

21. LEGEND, http://legend-exp.org/
22. Geant4 Collaboration, S. Agostinelli, et al., Nucl. Instrum. Methods

A 506(3), 250 (2003)
23. Geant4 Collaboration, J. Allison et al., IEEE Trans. Nucl. Sci.

53(1), 270 (2006)
24. J. Allison et al., Nucl. Instrum. Methods A 835, 186 (2016)
25. J. Liu, Development of segmented germanium detectors for neutri-

noless double beta decay experiments. Ph.D. thesis, Technische
Universität München (2009). https://mediatum.ub.tum.de/node?
id=701884

26. D. Lenz, Pulse shapes and surface effects in segmented germanium
detectors. Ph.D. thesis, Technische Universität München (2010).
https://inis.iaea.org/search/search.aspx?orig_q=RN:41120150

27. I. Abt, A. Caldwell, K. Kroeinger, J. Liu, X. Liu, B. Majorovits,
Nucl. Instrum. Methods A 583(2–3), 332 (2007). https://doi.org/
10.1016/j.nima.2007.09.017

28. P. Luke, F. Goulding, N. Madden, R. Pehl, I.E.E.E. Trans, Nucl.
Sci. 36(1), 926 (1989)

123

https://github.com/radforddc/icpc_siggen
https://github.com/radforddc/icpc_siggen
https://conferences.lbl.gov/event/121/session/4/contribution/18
https://conferences.lbl.gov/event/121/session/4/contribution/18
https://www.agata.org
http://greta.lbl.gov
https://indico.mpp.mpg.de/event/3121/session/6/contribution/33
https://indico.mpp.mpg.de/event/3121/session/6/contribution/33
http://simion.com/
http://www.ansys.com/products/electronics/ansys-maxwell
http://www.ansys.com/products/electronics/ansys-maxwell
https://fenicsproject.org/
https://github.com/JuliaHEP/SolidStateDetectors.jl
https://github.com/JuliaHEP/SolidStateDetectors.jl
http://legend-exp.org/
https://mediatum.ub.tum.de/node?id=701884
https://mediatum.ub.tum.de/node?id=701884
https://inis.iaea.org/search/search.aspx?orig_q=RN:41120150
https://doi.org/10.1016/j.nima.2007.09.017
https://doi.org/10.1016/j.nima.2007.09.017

Eur. Phys. J. C (2020) 80:230 Page 25 of 25 230

29. Julia Language. https://julialang.org/
30. W.L. Hansen, E.E. Haller, MRS online proceedings library archive

16 (1982)
31. G. Wang, M. Amman, H. Mei, D. Mei, K. Irmscher, Y. Guan, G.

Yang, Mater. Sci. Semiconduct. Process. 39, 54 (2015)
32. Conjugate gradient method—wikipedia. https://en.wikipedia.org/

wiki/Conjugate_gradient_method
33. ROOT a data analysis framework. https://root.cern.ch/
34. M. Salathe, R.J. Cooper, H.L. Crawford, D.C. Radford, J.M. All-

mond, C.M. Campbell, R.M. Clark, M. Cromaz, P. Fallon, P.A.
Hausladen, M.D. Jones, A.O. Macchiavelli, J.P. Wright, Nucl.
Instrum. Methods A 868, 19 (2017). https://doi.org/10.1016/j.
nima.2017.06.036

35. L. Mihailescu, W. Gast, R. Lieder, H. Brands, H. Jäger, Nucl.
Instrum. Methods A 447(3), 350 (2000). https://doi.org/10.1016/
S0168-9002(99)01286-3

36. L. Reggiani, Phys. Rev. B 17(6), 2800 (1978). https://doi.org/10.
1103/PhysRevB.17.2800

37. B. Bruyneel, P. Reiter, G. Pascovici, Nucl. Instrum. Methods A
569(3), 764 (2006)

38. Z. He, Nucl. Instrum. Methods A 463(1), 250 (2001). https://doi.
org/10.1016/S0168-9002(01)00223-6

39. V. Radeka, Ann. Rev. Nucl. Part. Sci. 38(1), 217 (1988). https://
doi.org/10.1146/annurev.ns.38.120188.001245

40. E. Gatti, G. Padovini, V. Radeka, Nucl. Instrum. Meth-
ods Phys. Res. 193(3), 651 (1982). https://doi.org/10.1016/
0029-554X(82)90265-8

41. T. Nashashibi, G. White, I.E.E.E. Trans, Nucl. Sci. 37(2), 452
(1990). https://doi.org/10.1109/23.106661

42. T. Nashashibi, Nucl. Instrum. Methods A 322(3), 551 (1992).
https://doi.org/10.1016/0168-9002(92)91230-7

43. ROOT coding conventions. https://root.cern.ch/
coding-conventions

44. Y. Takahashi, V. Vassilev, O. Shadura, R. Isemann, EPJ
Web Conf. 214, 02011 (2019). https://doi.org/10.1051/epjconf/
201921402011

45. GitHub. https://github.com/
46. The MIT license | open source initiative. https://opensource.org/

licenses/MIT
47. GitHub flavored markdown spec. https://github.github.com/gfm/
48. Doxygen. http://www.stack.nl/~dimitri/doxygen/index.html
49. Cling. https://cdn.rawgit.com/root-project/cling/master/www/

index.html
50. Project Jupyter. https://www.jupyter.org
51. R. Barrett, et al., in Templates for the Solution of Linear Systems:

Building Blocks for Iterative Methods, 2nd edn. (SIAM, Philadel-
phia, 1994)

52. M. Amman, (2018). arXiv:1809.03046

123

https://julialang.org/
https://en.wikipedia.org/wiki/Conjugate_gradient_method
https://en.wikipedia.org/wiki/Conjugate_gradient_method
https://root.cern.ch/
https://doi.org/10.1016/j.nima.2017.06.036
https://doi.org/10.1016/j.nima.2017.06.036
https://doi.org/10.1016/S0168-9002(99)01286-3
https://doi.org/10.1016/S0168-9002(99)01286-3
https://doi.org/10.1103/PhysRevB.17.2800
https://doi.org/10.1103/PhysRevB.17.2800
https://doi.org/10.1016/S0168-9002(01)00223-6
https://doi.org/10.1016/S0168-9002(01)00223-6
https://doi.org/10.1146/annurev.ns.38.120188.001245
https://doi.org/10.1146/annurev.ns.38.120188.001245
https://doi.org/10.1016/0029-554X(82)90265-8
https://doi.org/10.1016/0029-554X(82)90265-8
https://doi.org/10.1109/23.106661
https://doi.org/10.1016/0168-9002(92)91230-7
https://root.cern.ch/coding-conventions
https://root.cern.ch/coding-conventions
https://doi.org/10.1051/epjconf/201921402011
https://doi.org/10.1051/epjconf/201921402011
https://github.com/
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://github.github.com/gfm/
http://www.stack.nl/~dimitri/doxygen/index.html
https://cdn.rawgit.com/root-project/cling/master/www/index.html
https://cdn.rawgit.com/root-project/cling/master/www/index.html
https://www.jupyter.org
http://arxiv.org/abs/1809.03046

	HPGe detector field calculation methods demonstrated with an educational program, GeFiCa
	Abstract
	1 Introduction
	2 Space charges
	3 Poisson's equation
	4 Analytic solutions
	4.1 Planar detectors
	4.2 Coaxial detectors
	4.3 Hemispherical detectors
	4.4 Depletion voltage
	4.5 Impurity requirement

	5 Numerical calculation
	5.1 Conjugate gradient method
	5.2 Successive over-relaxation method
	5.3 Depletion voltage
	5.4 Undepleted region
	5.5 Electric field lines
	5.6 Boundaries in between grid points
	5.7 Weighting potential in segmented detectors
	5.8 Capacitance
	5.9 Interpolation between grid points

	6 Implementation
	6.1 Coding convention
	6.2 Class structure
	6.3 Data structure and I/O
	6.4 Detector configurations
	6.5 Units and constants
	6.6 Compilation and installation
	6.7 Supported OS
	6.8 Code accessibility
	6.9 Code documentation
	6.10 Macros and scripts

	7 Code verification
	7.1 Comparison with analytic solutions
	7.2 Comparison with fieldgen

	8 Performance
	8.1 Relaxation factor
	8.2 Output file size

	9 Extendability and limitation
	10 Summary
	Acknowledgements
	Appendix A: Poisson's equation in curvilinear coordinates
	Appendix B: Iteration relations
	References

